Experiments in Parallel Evolutionary Partitioning

Hendrik Schulze, Reiner Haupt, Klaus Hering
Universitat Leipzig, Institut fiir Informatik,
Augustusplatz 10-11, D-04109 Leipzig, Germany
email:{hendrik,haupt,hering } @informatik.uni-leipzig.de

Abstract

Parallelization of logic simulation based on a replicated worker principle allows sig-
nificant acceleration of functional verification in microprocessor design. Corresponding
hardware model partitioning itself is an interesting subject for parallelization. In this
paper we consider the application of Parallel Evolutionary Algorithms in the frame-
work of a 2-level partitioning scheme. Applying a multiple subpopulation approach
that permits various communication strategies we have reached promising experimen-
tal partitioning results for IBM S/390 processor models with more than 2 million
elements at register-transfer and gate level.

1 Introduction

Due to challenging technological capabilities the complexity of VLSI designs is growing
rapidly. Therefore, the use of verification tools in all design phases is unavoidable. Sim-
ulation is a very important but time-extensive verification method for the logic design of
microprocessor structures [Spr89]. Based on the message-passing paradigm, in [HHV96] we
describe a parallelization approach concerning particular logic simulation processes for func-
tional verification. Within a parallel simulation, several co-operating simulator instances
run on a loosely-coupled system, each of them handling a part of a complex hardware model
(replicated worker principle). The efficiency of the parallel simulation is essentially influenced
by the corresponding model partitioning which is related to a NP-hard graph partitioning
problem. Due to the complexity of processor models under consideration and a special cost
function based on a formal model of parallel cycle simulation [Her96] we generally apply a
2-level partitioning strategy. Thereby, model partitioning appears as bottom-up clustering
starting from possibly overlapping elementary model parts called cones. During a fast prepar-
titioning step cones are combined to super-cones. Prepartitioning represents a compromise
between the advantage of reducing the problem complexity for the following partitioning
step and a restriction of the solution space that lets one expect suboptimal partitioning
results. Within our strategy prepartitioning establishes the precondition for the successful
application of Evolutionary Algorithms [Rec73| in final partitioning.

In Chapter 2 we describe the application of Evolutionary Algorithms in the field of
model partitioning. Especially, a complex partitioning example is considered and a short

retrospect concerning our previous work on Evolutionary Algorithms is provided. The next
chapter outlines advantages of the multiple subpopulation approach which naturally leads
to Parallel Evolutionary Partitioning Algorithms (PEPAs). These algorithms are subject
of Chapter 4. Selected experimental results concerning migration strategies and a special
asynchronous communication mechanism called lazy communication are presented. Finally,
in Chapter 5 conclusions are given.

2 Evolutionary Partitioning Algorithms

Using Evolutionary Algorithms we apply principles of the biological evolution theory to the
field of computer science to tackle combinational optimization problems. Our Evolutionary
Partitioning Algorithms (EPAs) work over a set (population) of individuals, which are rep-
resented by their genetic code describing a hardware model partition. Each evolution cycle
starts with recombination (crossover) where pairs of individuals produce a set of offspring
by reproducing and mixing their genetic code fragments. Additionally, the genetic code is
changed with a weak probability by a mutation operator. The new individuals are evaluated
by a fitness function which estimates the parallel simulation time per clock-cycle for the cor-
responding partitioned processor model. The best individuals, resulting from the offspring
and a part of the parent generation, are selected to establish the following generation. Dur-
ing the evolution process the population improves its average fitness and converges towards
the global optimum.

We use a straightforward coding of individuals (see Figure 1), where each gene represents
a super-cone coded by an integer as block index.

[O[3[T12[0[3[0[2]1]

Figure 1: Representation of a partition with 10 super-cones and 4 blocks as an individual.

So, each individual has the same length (number of genes) and each gene has the same
range of valid integer values, which guarantees the creation of valid individuals applying the
recombination operator (see Figure 2).

[or3[1[1]2[0]3[0[2[T] [OI3[1[o[o113[0f2[1]

—_—

3[0I0[1]2[3[2[0] (2111 3[112[012[3[2]0]

Figure 2: Recombination of two individuals exchanging 3 genes.

Due to the complexity of processor models under consideration the EPAs are embedded
in a 2-level partitioning strategy [HHV96] in the context of our special partitioning problem.
Combining cones as basic elements to super-cones at the first partitioning level (preparti-
tioning step) the problem complexity is drastically reduced but also the possibility to find
acceptable solutions is restricted. At the first level, a fast and effective algorithm (STEP)
is applied which makes use of special knowledge concerning the internal representation of

the VLSI models so that especially a lot of unfavourable partitioning solutions are excluded.
Based on this prepartitioning the number of elements to be partitioned is enormously re-
duced, from up to millions of cones at the first level to hundreds or thousands of super-cones
at the second level.

At the second level super-cones are merged to a final partition, the set of blocks. Our
partitioning aim (minimization of the partition-bound parallel simulation time) is related
to a complicated cost function of a partitioning applied to a hypergraph representing a
combination of an overlap and communication hypergraph whose nodes are identified by the
super-cones [HHPV97|. Because of this complicated cost function, conventional partitioning
tools as for instance METIS [KK95] and PARTY [PD96] are not applicable for our special
partitioning procedure. An intuitive way to get an acceptable partition at the second level is
to produce a set, of random partitions as initial population for the application of EPAs using
the cost function as fitness function. But, the fitness landscape considered here has many
local minima and is rather jagged. Our intention was to include special model knowledge
using several parameterized initial partitioning algorithms like MOCC, nBCC and STEP
(see [HHV96]) to prepare an initial population with many rather good but concerning its
genetic variety very different individuals. Hence, the partition quality at the beginning of
the evolution is already a higher one than using random partitions. Simultaneously, we have
an almost homogeneous distribution of individuals inside of the search space which leads to
a high improvement potential for evolution.

12

10

250 super-cones

500 super-cones

prepartitioning

-

XXX, X, K X X Xy X Xy Xy X
ERE D

o o 0 O O
Ooooo i
o

o

o

——
xxXXXXXXXXX*
T
4
I

o o o o ©
Oooooo

start partitions: 4 6 °
X STEP I+

speedup

O RANDOM

-+ mocc] 2 L

o
creation of the hypergraph

model loading

100 200 300 400 500 600 700 800 900
partitioning time (s)

0 100 200 300 400 0

partitioning time (s)

Figure 3: Complete partitioning procedure (model loading, prepartitioning, hypergraph creation,
production of start population, EPAs) for 2 different numbers of super-cones and 3 different al-
gorithms (STEP, RANDOM, MOCC) creating start partitions with 16 blocks at the second level.
For all partitions of the initial population and the best individual per each 50th generation the
speedup dependent on the partitioning time is shown.

In Figure 3 examples for a full partitioning procedure! in dependence on the time con-
sumption are shown which include a constant phase comprising model loading, a short
prepartitioning step and the creation of the hypergraph. The relative time slice for these
three phases is reduced with an increasing number of super-cones. For the two diagrams of

Lconcerning an IBM S/390 processor model with 2,7 million elements on register - transfer and gate level

Figure 3 partition-bound speedup? values yielded by three different partitioning procedures
are shown, each with 40 individuals using STEP, MOCC and RANDOM algorithms for the
initial population, respectively. In comparison to the evolution phase, which consumes the
major part of overall partitioning time, the production of the initial population is very fast
(symbol cloud after hypergraph creation). For both diagrams, using knowledge-based algo-
rithms (MOCC, STEP) the partitions of the initial populations are significantly better than
those produced by RANDOM. Additionally, the partitions of initial populations based on
MOCC and STEP provide an improvement potential by EPA application similar to that of
randomly produced partitions. For all further experiments we use 250 super-cones, 16 blocks
and the MOCC algorithms to generate the initial population. Furthermore, the processor
model mentioned above is chosen in all cases.

Alternatively to EPAs as collective optimization methods, many single partitions can
be produced and improved independently from another, followed by the choice of the best
partition for a succeeding parallel simulation. For our purposes, we have developed iterative
improvement algorithms such as TABU SEARCH and a FIDucciA-MATTHEYSES —like algo-
rithm [Sie98] which handle single partitions. In contrast to EPAs, these algorithms strongly
depend on the initial partition. Hence, if one performs a definite number of trials (containing
an initial and improvement partitioning algorithm) no guaranty is given to get a final par-
tition with acceptable quality. This main disadvantage is overcome using EPAs. Especially
due to the effect of the recombination operator (see Figure 2), EPAs almost always provide a
sufficiently good final partition if the initial population is big and genetically diverse enough.

To achieve better partitioning results in shorter time using EPAs, we have integrated
the concept of superposition [HHPV97]| into the evolution strategy. Introducing a local
search operator [HHS98] based on an adaptation of an iterative partitioning algorithm of
FIDUCCIA-MATTHEYSES we have enriched our EPAs to a hybrid technique. Both features
work effectively if the fitness function is very complex with many local minima as it is in our
case. Using a dynamic fitness function [SHH99] which includes an additional generation-
dependent term favouring partitions with a higher potential of improvement especially at
the beginning of the evolution, also better results are obtained.

In addition to that, a promising way to increase the probability to find a solution near the
global optimum in a rich-structured fitness landscape is to broaden the population concerning
the search space using a multiple subpopulation approach with an extended number of
individuals.

3 Multiple Subpopulation Approach

The multiple subpopulation approach is based on the island model, a population genetic ap-
proach. Therein the individuals of one big population are distributed to n subpopulations.
For each subpopulation a local evolution is computed. After a dedicated number of genera-
tions a few individuals can migrate to other subpopulations and translate their genetic code
by proliferation. These migrating individuals are not integrated into the other subpopula-

2If not stated otherwise, throughout the paper with speedup the ratio between sequential simulation time
(concerning the complete hardware model) and partition-bound parallel simulation time is meant (to express
the partition quality).

tion but can leave some genetic improvements by creating offspring with an individual from
the target subpopulation. Applying this approach it is possible to get better optimization
results than with one big population. This can be explained by the fact that a suboptimal
individual at early evolution time can dominate the complete population and force the other
individuals to remain in its surrounding. In our approach the isolation of the subpopulations
and selective migration evade the mentioned disadvantage. Using the multiple subpopula-
tion approach acceptable results can be found in shorter time, better results are found and
the evolution converges with more reliability.

4 Parallel Evolutionary Partitioning Algorithms

Local evolution processes within a multiple subpopulation approach give a natural way to
parallelize Evolutionary Partitioning Algorithms, using the same loosely-coupled system as
target hardware where after partitioning the corresponding parallel logic simulation will be
done. The subpopulations can be distributed to the several nodes of the parallel hardware.
Our implementation of the Parallel Evolutionary Partitioning Algorithms [Sch98] (PEPAs)
realizes migration by message passing, using a MPI library.

Several subpopulation approaches differ especially in their migration strategies. The
PEPA implementation includes data structures which facilitate a dynamic and highly ef-
fective communication and allow to adjust all parameters relevant for migration, e.g. the
number of migrating individuals, the communication structure between the single subpop-
ulations and the period between migrations. Every possible communication topology can
be combined with any number of migrating individuals. In this context we have introduced
a communication matrix, which is configured at program start. From this communication
matrix a send and receive vector are extracted which control the communication behaviour.

Topology | Speedup after Number of | Time period between migrations
generation migrating (counted in generations)
250 500 individuals 1 5 10 25 50

Ring 11,360 | 11,387 Speedup after generation 250

dRing 11,198 11,277 1 10,972 10,821 10,761 10,596 10,528

Matrix 11,174 11,380 5 11,031 10,859 10,726 10,631 10,598

dMatrix 11,151 11,364 10 10,941 10,989 10,907 10,619 10,576

Star 10,879 11,287 20 10,952 10,958 10,961 10,828 10,695

dStar 11,033 11,341 Speedup after generation 500

AllToAll 10,680 11,166 1 11,077 10,963 10,983 10,884 10,921
5 11,082 11,077 10,983 10,883 10,921
10 11,019 11,339 10,998 11,063 10,822
20 10,965 11,308 10,977 10,941 10,958

Table 1: Speedup related to special migration topologies, where dRing, dMatrix and dStar mean
the double - connected topology version (left table). Speedup for selected migration strategies
concerning migration frequency and number of migrating individuals (right table).

Based on our PEPA implementation we have examined a great variety of communication
strategies. In the course of our experiments® the best partitioning results have been reached
using a loosely connected communication structure (e.g. ring) and a static migration of
1%-30% of the individuals after every 1st up to 5th generation. Experimental results
for examples with 8 subpopulations (each containing 40 individuals) are given in Table 1.
Generally, if more individuals migrate they should do it in longer intervals. If communication
is too strong, some suboptimal individuals can dominate all subpopulations and slow down
the whole evolution. Compared to the huge expense for executing the fitness function (95%
of the PEPA runtime) the communication overhead nearly disappears, a fact which is very
favourable for parallel computing.

Our PEPAs include a special kind of asynchronous communication called lazy communi-
cation. Load influences and the heterogeneity of a workstation cluster can cause PEPAs to

synchronous

|

saropiainz| [W ¢ [M-

asynchronous (lazy)

A=

_—

evaluation

subpopulation 1
I communication

lazy

BE00

wait

subpopulation 1

subpopulation 2

Figure 4: Synchronous vs. lazy communication.

wait at communication points. Lazy communication avoids such waiting periods by using
nonblocking send and receive functions of the MPI-library. Before starting a new commu-
nication (sending individuals from one subpopulation to another) the success of the last
communication to the same subpopulation is requested. If the last communication has not
yet been successful, the new communication is rejected and evolution is going on without
sending individuals (cf. Figure 4).

communication loss | 0% 5% 10% 20% 30% 40% 50% 60% 70%
average speedup 12,26 | 12,3 | 12,28 | 12,32 | 12,38 | 11,56 | 11,35 | 11,12 | 11,02

Table 2: Dependence of the partition quality on communication loss.

Experiments show that evolution results don’t get worse, if up to 35% of all communica-
tion actions fail (see Table 2). The lazy communication approach allows to use heterogeneous
workstation clusters efficiently without implementing dynamic load balancing algorithms (see
Figure 5).

3About 8000 experiments have been done on an IBM SP2-Parallel Computer using up to 112 nodes.
Every experiment has been done 16 times with a different initialization of the random number generator.

b2
th
T

b
=
T

fitness (simulation time in ms)
8
speedup

e
k>
T

=
—

0 ‘ 160 ‘ 2;30
partitioning time (s)

Figure 5: With 1 of 8 nodes slowed down by 50%, PEPAs on a double-connected ring topology
using lazy communication reach the same fitness value as in the synchronous case in shorter time.

For the same IBM S/390 processor model as used in Figure 3 PEPAs resulted in partitions
which were about 10%-20% better (expressed in terms of the fitness function) than related
EPA results. Compared to EPAs, generally it took PEPAs significantly less partitioning
time to produce final partitions (cf. Figure 6).

b
&
T

[
i
|
i
i
|
]
I

1

\

|

=
L
T

')

@

b

13
T

speedup

10

21+

fitness (simulation time in ms)
fitness (simulation time in ms)

11
19

200 600 1000 1400
generations partitioning time (s)

Figure 6: Partitioning results with a) PEPAs (8 subpopulations with 40 individuals and 100

children each) b) EPAs (320 individuals and 800 children) c¢) EPAs (40 individuals and 100
children) related to the number of generations and the partitioning time.

5 Conclusions

In the framework of a hierarchical strategy we have successfully applied Evolutionary Algo-
rithms to the field of model partitioning for logic simulation in VLSI design. Based on a
multiple subpopulation approach, in this paper we have presented Parallel Evolutionary Par-
titioning Algorithms taking advantage of dynamic communication structures and a special
type of asynchronous (lazy) communication. Because of the small communication overhead
and the potential of lazy communication these algorithms work very efficiently, even on a

heterogeneous workstation cluster. By means of an IBM S/390 processor model we have
exemplified that the parallel approach leads to better partitioning results in significantly
shorter time.

References

[Her96]

[HHPV97]

[HHSOS]

[HHV96]

[KK95]

[PD9G]

[RecT3]

[Sch9g|

[SHH99]

[Sie98]

[Spr89]

K. Hering. Parallel Cycle Simulation. Technical Report 13(96), Department of
Computer Science, University of Leipzig, Germany, 1996.

R. Haupt, K. Hering, U. Petri, and T. Villmann. Hierarchical Model Partition-
ing for Parallel VLSI-Simulation Using Evolutionary Algorithms Improved by
Superpositions of Partitions. In Proc. of the 5th European Congress on Intelli-
gent Techniques and Soft Computing (EUFIT’97), Volume 1, pages 804 — 808.
Verlag Mainz, 1997.

R. Haupt, K. Hering, and Th. Siedschlag. Integration of a Local Search Operator
into Evolutionary Algorithms for VLSI-Model Partitioning. In Proc. Of the 6th
European Congress on Intelligent Techniques and Soft Computing (EUFIT’98),
Volume 1, pages 377 — 381. Verlag Mainz, 1998.

K. Hering, R. Haupt, and T. Villmann. Hierarchical Strategy of Model Parti-
tioning for VLSI-Design Using an Improved Mixture of Experts Approach. In
Proc. of the Conference on Parallel and Distributed Simulation (PADS’96), pages
106-113. IEEE Computer Society Press, Los Alamitos, 1996.

G. Karypis and V. Kumar. MeTiS: Unstructured Graph Partitioning and Sparse
Matrix Ordering System. 1995.

R. Preis and R. Diekmann. The PARTY Partitioning-Library, User Guide -
Version 1.1. Technical Report tr-rsfb-96-024, Univ. of Paderborn, Germany, 1996.

I. Rechenberg. FEwolutionsstrategie - Optimierung technischer Systeme mnach
Prinzipien der biologischen Information. Fromman Verlag Freiburg, 1973.

H. Schulze. Entwicklung, Untersuchung und Implementierung von Algorithmen
fiir die Modellpartitionierungskomponente parallelMAP. Diplomarbeit, Univ.
Leipzig, Inst. fiir Informatik, 1998.

H. Schulze, R. Haupt, and K. Hering. Dynamic Fitness Function for Parallel
Evolutionary Partitioning Algorithms in the Context of Parallel Logic Simula-
tion. In 7th FEuropean Congress on Intelligent Techniques and Soft Computing
(EUFIT’99), 1999. accepted for publication.

T. Siedschlag. [Iterative Modellpartitionierungverfahren fur die parallele Logik-
simulation. Diplomarbeit, Univ. Leipzig, Inst. fiir Informatik, 1998.

W.G. Spruth. The Design of a Microprocessor. Springer Verlag, 1989.

